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Abstract—This paper reports the results of a numerical investigation of mixed convection heat transfer
from a horizontal rod of circular cross-section that is embedded in a porous medium. The rod temperature
is first assumed to be the same as that of the medium and then suddenly increased to a higher constant
value. The steady-state problem has been solved by the method of series truncation in combination with
a finite-difference scheme for the two flow configurations of parallel and counter-flow regimes. The flow
and thermal fields as well as the variations of the average and local heat transfer rates with a wide range
of Reynolds number, Grashof number and buoyancy parameter have been examined in detail for a Prandtl
number of 0.7. One of the interesting features found is the occurrence of a recirculating flow zone near the
upper half surface of the rod in the case of the counter-flow regime. The numerical method and the results
presented fill in a gap in the literature on one of the most fundamental problems in the field of mixed
convection in porous media.

1. INTRODUCTION

INTENSIVE interest has been shown in recent years in
the area of convective heat transfer in fluid-saturated
porous media. This is quite natural because of the
numerous and wide-ranging engineering applications
of convective flow through porous media. For exam-
ple, this class of phenomena is encountered in indus-
trial and geophysical contexts such as petroleum res-
ervoir modelling, thermal insulation techniques,
geothermal activities, chemical and nuclear engin-
eering, solar power collectors, regenerative heat ex-
changers containing porous materials, burying of
drums containing heat generating chemicals in the
earth and underground spread of pollutants. Bejan
[1], Cheng [2] and Nield [3] have recently provided
extensive state-of-the-art reviews on convective heat
transfer in fluid-saturated porous media.

One of the most basic problems in porous media
which has important applications to the design of
canisters for nuclear waste disposal systems is the natu-
ral convection from a horizontal circular cylinder
embedded in a porous medium. Schrok er al. [4] and
Fernandez and Schrok [5] have carried out experi-
ments and numerical calculations for a cylinder buried
beneath a permeable, horizontal surface. Their work
resulted in a heat transfer correlation fitting the deter-
mined experimental and numerical data within a stan-
dard deviation of 11.4%. Unsteady heat transfer from
a circular cylinder immersed in a porous medium
through which a liquid is flowing according to Darcy’s
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law in a potential flow has been studied by Sano [6].
He derived asymptotic solutions for large and small
Peclet numbers, Pe, for the case where the unsteady
temperature field is produced by a step change in
wall temperature. The former solution is valid for
Pe > 200 and the latter one for Pe < 0.1, respectively.
The series solution for small time, which is valid for
all values of Pe, is first obtained. Euler’s trans-
formation is then applied to the series solution for the
average Nusselt number resulting in improving the
convergence criterion as well as giving satisfactory
results for most values of time. Similarity solutions
of the governing equations that describe the steady
natural convection about a circular cylinder in a
porous medium were obtained by Merkin [7], Nilson
[8] and recently by Fand et al. [9], who relied on the
framework provided by the boundary-layer theory.
In ref. [9] the authors have also presented interesting
experimental results for porous media consisting of
randomly packed glass spheres saturated by either
water or silicone oil. More recently, the cylinder
geometry was the subject of a detailed numerical study
[10], which obtained, at large Rayleigh numbers, the
second-order boundary-layer solution, too. Ingham
et al. [11] have reported analytical and numerical
solutions for the time-dependent natural convection
boundary layer due to sudden imposition of a tem-
perature difference between the cylinder surface and
the fluid-saturated medium.

Despite the strong interest expressed by the fluid
mechanics community in the problem of mixed con-
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NOMENCLATURE

a radius of the rod Greek symbols
g gravitational acceleration o thermal diffusivity
Gr modified Grashof number B coefficient of thermal expansion
hh local and average heat transfer 0 angular coordinate

coefficients v kinematic viscosity
k fluid-porous matrix conductivity 14 logarithmic radial coordinate
K porous medium permeability ¢ dimensionless temperature
Nu, Nu local and average Nusselt numbers ¥ dimensionless stream function.
Pr Prandtl number
q heat transfer rate
r dimensionless radial coordinate Subscripts
Re Reynolds number, 2au,./v r radial direction
t dimensionless time ] surface condition

dimensional temperature 0 transverse direction
U, free stream velocity 0 free stream condition.
v,,vs  Darcian dimensionless radial and

transverse components of velocity.

vection flow past a horizontal rod or cylinder
immersed in a Newtonian fluid, the corresponding
problem of mixed convection in a porous medium has
received comparatively much less attention. To the
authors’ knowledge, only the papers by Cheng [12],
Minkowycz et al. [13] and Huang ef al. [14] exist in
the literature on the problem of mixed convection past
a horizontal cylinder in the presence of boundary-
layer flows. Reference [12] reports similarity solutions
for the steady mixed convection flow about an iso-
thermal cylinder while in ref. [13] the authors have
derived approximate solutions of the boundary-layer
equations based on the local similarity and non-simi-
larity methods for the problem of mixed convection
from a non-isothermal cylinder. Numerical solutions
were carried out up to the third level of truncation. In
ref. [14] the authors extended the problem described
in ref. [12] to the case of a uniform surface heat flux.
The governing boundary-layer equations were solved
by employing an implicit finite-difference method. All
three papers treated the case of parallel flow only.
However, no prior study was done for this problem
to investigate the accuracy and limitations of the
boundary-layer simplifications as well as the assump-
tions of potential flow outside the boundary layer. It
is, therefore, the aim of this paper to carry out a
detailed numerical analysis of the combined con-
vection heat transfer from an isothermal horizontal
rod of circular cross-section embedded in a porous
medium for the two cases when the forced flow is
directed either vertically upward (parallel flow) or
vertically downward (counter flow), respectively. We
would like to emphasize that the investigation is based
on the solution of the full equations of mass, momen-
tum and energy, and not on the boundary-layer equa-
tions and so the gravitational force normal to the

heated surface of the rod is not neglected. The govern-
ing equations were solved using a finite-difference
scheme similar to that developed in refs. [15,16] and
applied successfully to some viscous mixed convection
problems (non-porous medium) in refs. [17-19]. The
velocity and thermal fields are developed in time until
reaching the steady-state conditions. The numerical
calculations include details of the steady-state flow
behaviour as well as results for the local and average
Nusselt numbers as a function of both Grashof and
Reynolds numbers.

The purpose of the present work is twofold : first to
study the case of parallel flow in order to get infor-
mation concerning the variation of the local and aver-
age Nusselt numbers over the rod surface, and second
to present results for the case of the counter-flow
regime and show the effect of different parameters on
streamline and isotherm patterns. In particular, we
focus attention on the flow region near the upper and
lower stagnation points. Sample results of the heat
transfer rate are presented in tables for a range of
Reynolds and Grashof numbers. We believe that such
tabulations might serve as a reference against which
other approximate solutions or experimental data can
be compared in the future.

2. BASIC EQUATIONS

Consider a horizontal rod of radius a embedded
in a fluid-saturated porous medium of uniform free
stream velocity u,, and temperature T,. The free
stream is directed either vertically upward or vertically
downward, respectively, as shown in Fig. 1. Let the
temperature of the rod be suddenly increased to and
maintained at a constant value T, (> T,,) for all sub-
sequent times, which will cause transient thermal con-
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" Parallel flow

FiG. 1. Coordinate systems for parallel and counter flows.

vection in the medium. The line 8 = 0° is considered
to be the radius through the rear-most point on the
rod surface viewed from the upstream direction (i.e.
the free stream will always be in the direction 6 = 0°).
In the porous medium, Darcy’s law is assumed to
hold, the fluid is presumed to be a normal Boussinesq
fluid, and the viscous drag and inertia terms of the
momentum equations are neglected because their
magnitudes are of small order compared to other terms
for low Darcy numbers and low particle Reynolds
numbers. Owing to the last assumption, velocity slip
at the rod surface is permitted.

With these assumptions, the conservation equa-
tions for mass, momentum and energy for unsteady
flow in an isotropic porous medium can be written in
polar coordinates (', 0) as

K (8T . 0T cosf
V’lez’ilq—f—(wsme+ﬁgor—f—)= (1)

oT 0T v, 0T .
574'0,!'67 rﬁ—av T (2)

where

2 148 1 &

12___ P, o

Vi=artrawtre

¢ is the time, v/, and v} are velocities in the r'- and 8-
directions, T the temperature and the other variables
are defined in the Nomenclature. The stream function
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Counter flow
W is related to the velocity components by
0, =r"'oY'|00, vy= —0oy'lor. 3)

The equations are further transformed to their non-
dimensional form by introducing the following dimen-
sionless quantities :

t="tuyla, r=rja, v, =uv,lu,,

ll/ = ‘///auwa ¢ = (T_ Too)/(Ts_Too)*

Using the above variables, equations (1) and (2)
become

Vg = Ué/um,

Gr (i . d¢ cos @
2 _— - —_—— =
v wiRe(@r sin 8+ 30 7 ) 0 4
o 0p ve0¢ 2 _,
ot +v'5; r e RePrV ¢ )

where

Gr = gBK(T,—T.)2a)/v?
is the modified Grashof number

Re = 2au,, /v
is the Reynolds number, and

Pr = vja

is the Prandtl number. It should be noted that the sign
of the buoyancy term in equation (4) depends on
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the flow regime and is positive for parallel flow and
negative for counter flow.

The appropriate boundary conditions of equations
(4) and (5) are

v,=0 and ¢=1 at r=1 (6a)
v, »>cosf, vy— —sinf, and ¢—-0 as r— 0.
(6b)

In the next section, we rely on a direct numerical
solution to determine the basic features of the steady-
state mixed convection phenomena taking place in the
porous region adjacent to the rod surface.

3. METHOD OF SOLUTION

The governing equations (4) and (5) are solved
using essentially the same finite-difference scheme as
that described in refs. [17-19]. In this solution method
the modified polar coordinates (£,6) are employed,
where £ = Inr and accordingly the above equations
(4) and (5) are transformed to

angrg(;f_e —(%m 0+—¢cos0>=0 %
200 2 ¢ ¢\ Wop oy i
e%szXw+ J'%&+%% @®

where the dimensionless radial and transverse velocity
components v, and v, become

= r ' Oy/00 = e~* 3y,
vg = — OWjOr = —e~% OyjoEL. ©)

Boundary conditions (6) can be written as

Y=0p/d8=0, ¢=1 at E=0 (10a)
et O0Y/o0 - cosB, et OY/dE —sinb,
and ¢—-0 as ¢&-— 0. (10b)

Since the flow and temperature fields are symmetric
about a vertical line passing through the centre of
the rod, the following series expansion of the stream
function y and temperature ¢ is assumed

Y= if,,(é,t)sinn() (11a)

¢ =190(&, 0+ Y, g.(&, 1) cosnb.

n=1

(11b)

The same truncated Fourier series has been used by
Ingham et al. [11] for studying the free convection
limit (Re = 0) of the problem. When equations (11)
are substituted into equations (7) and (8), and like
terms in sin and cos equated, the following differential
equations can be deduced :

62
Egzﬁ—nzf,,is,, =0 (12a)
ago 2 ago

26770

€5 “Repr oz T4 (12b)
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2e

2¢agn__ 2 azgn
8t~ RePr\ o&*

690
J— 2 J— —_—
n gn> nfy o +Z, (120)

where S, Z, and Z, are functions of £ and ¢ defined
as

5 a_gg agn-é—l _agn——l
"¢ o ¢

S.(&, t)-efzi [—

+(n~1)g..v1+(n+1)gn+1] (132)

o,

y 7
amo=—gg@;” ) (136)

o¢

Z(C’)——Z{ : (fitif)

+mg,, [gj;’ +sgn (m—n) aj;]} (13c)

where

6"={1forn=l

i=|m—n|, j=m+n

Oforn#1’
and sgn (m —n) denotes the sign of the term (m—n).
The appropriate boundary conditions of functions
Jw goand g, are

fi=9,=0 and go=2 at ¢=0 (l4a)
fu8,€5 0f,[08 > 6, €,
and g,,9, >0 as - 0. (14b)

For engineering applications, we are often con-
cerned with the effect of fluid motion on the heat
transfer from the rod surface. This can be evaluated
by computing the local Nusselt number Nu and the
mean Nusselt number Nu averaged over the rod sur-
face which are given by

Nu= 2ah/k}

N = 2ahjk (15

where £ and /4 represent the local and average heat
transfer coefficients, which are given by

2n
h= qs/(Ts_Tao)’ h—= 1/27'["‘ hdg,
0

and ¢, = —k[0T/or], . (16)

From equations (11), (15) and (16) it follows that
the Nusselt numbers can be expressed in the form:

Nu=[ %, 22 ] (172)
=0

Naz|_%
Nu—[ 6§]¢=o' (17b)

As mentioned before, a complete numerical solu-
tion to equations (12) with boundary conditions (14)
is obtained by using a method similar to that given in
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refs. [17-19]; its detailed formulation is omitted here
since it is well described in the above mentioned ref-
erences.

4. RESULTS AND DISCUSSION

4.1. Introductory comments

The combined convection heat transfer from a hori-
zontal rod embedded in a fluid-saturated porous
medium is studied numerically for the two cases when
the forced flow is directed either vertically upward
(parallel flow) or vertically downward (counter flow).
The numerical step-by-step procedure has been per-
formed right up to the steady-state solution and it is
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shown that this flow is dependent on the Reynolds
number, Re, Grashof number, Gr, Prandtl number
Pr, in addition to the direction of the forced flow.
Moreover, the quantity Gr/Re in equation {4) is a
measure of relative importance of free to forced con-
vection, and is one of the controlling parameters for
the present problern. For each of the cases considered
in this paper, the steady-state regime was achieved
after a certain time from the start of the motion. This
time varies from one case to another, the maximum
time needed being 7 = 40. For all the results which are
presented here, the Prandtl number considered is 0.7
but the general ideas hold for other values, too. Let
us now discuss the results in each of its two parts of
paraliel flow and counter flow, respectively.

(a)

(c)

(b)

{d)

FIG. 2. The streamline pattern for the case of parallel flow: (a) Re = 20, Gr = 0; (b) Re = 20, Gr = 40;
(c) Re =20, Gr = 80; (d) Re = 100, Gr = 400. Streamlines plotted are yy = —2.0, —1.8, —1.6, —1.4,
—12, —1.0, —-0.8, —0.6, —0.4, —-0.2, —0.1, —0.05,0,0.05,0.1,0.2, 04, 0.6, 08, 1.0, 1.2, 1.4, 1.6, L8,

2.0,
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(a) (c)
(b) (d)
Fi1G. 3. The isotherm pattern for the case of paraliel flow: (a) Re = 20, Gr =0; (b)
Re = 20, Gr = 80; (d) Re = 100, Gr = 400. Isotherms plotted are ¢ = 0.1, 0.

Re =20, Gr = 40; (¢)
0.

2,03,...,09.
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4.2. Parallel flow

The numerical solution of the steady flow over the
rod is obtained for the parallel flow regime at Reyn-
olds numbers of 5, 10, 20, 50 and 100, and for para-
metric values of the Grashof number in each case.
The streamline and isotherm patterns for the cases of
Re =20 and 100 and for various values of Gr are
presented in Figs. 2(a)~(d) and 3(a)—(d), respectively.
We observe from these figures that near the line 6 = 0°
a buoyant plume exists above the rod. The width of
the plume decreases as Gr increases. The isotherms
given in Fig. 3 are seen to be distorted in accordance
with the flow patterns. The temperature distribution
resembles what would be found near a line heat source
where the heat is convected from the rod in a well-
defined plume. As Gr becomes larger a thick boundary
layer develops around the rod and the ¢ = 0.9 iso-
therm gets closer to the rod surface near § = 180° as
shown in Fig. 3(d). This fact indicates higher tem-
perature gradient and consequently greater heat
transfer rates there.

Figures 4(a) and (b) represent the temperature
distribution at @ = 0° as a function of the radial
distance r for different values of Gr and for Re = 10
and 50. If we consider the forced convection regime
(Gr/2Re = 0) as the standard case, we first note from
Fig. 4(a) that the buoyancy forces increase the tem-
perature along 6 = 0°. It is also seen that the tem-
perature decreases almost linearly with the radial dis-
tance indicating that conduction is predominant.
Then at higher Reynolds numbers (Re > 50) Gr has
a stronger effect on the temperature distribution. The
temperature profiles displayed in Fig. 4(b) for Re = 50
are very similar to those predicted by the boundary-
layer solution obtained by Minkowycz ez al. [13]. The
same trend is also observed in Figs. 5(a) and (b) as well
as in Figs. 6(a) and (b) for the radial and tangential
velocity components, the latter being plotted along the
radial line 6§ = 90° where the tangential component
increases greatly close to the surface of the rod.

The calculated values of the average Nusselt num-
ber Nu are listed in Table 1 from which it can be
concluded that Nu, at a given Re, increases con-

(a)

0.8 r

Gr=20,30,40

10

0.4 T

0.21

6r =0

A . . . ;
9 2 3 r 5 3 7 E

r
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tinuously with the increase of Gr. Typical results of
the calculations for Nu corresponding to Re = 20, 50
and 100 are also plotted in Fig. 7 as a function of
Gr{2Re ( on the right-hand side of this figure). One
can see here the gradual increase of Nu with the in-
crease in Re.

In Figs. 8(a) and (b), we compare the variation of
the local Nusselt number Nu with the angle 6 for
different Grashof numbers when Re = 10 and 50. The
numerical solution to the boundary-layer equations
obtained by Cheng [12] and Minkowycz ef al. [13] is
also included for comparison. According to ref. [12],
the local Nusselt number distribution is given by

Nu = 2.828(Pr Re)'*sin (8/2)[—¢’(0)]  (18)
where the numerical values of the dimensionless tem-
perature gradient ¢” are given in ref. [20] for different
values of Gr/Re. Figure 8 clearly shows that Nu
decreases monotonically from the highest value at
0 = 180° and reaches a minimum at 6 = 0°. This
behaviour agrees reasonably well, both qualitatively
and quantitatively, with the variation of Nu predicted
from the boundary-layer solution over all the rod
surface except near the top region (6 = 0°). The value
of Nu=0 at 6 = 0° obtained from the boundary-
layer solution (equation (18)) is questionable since the
boundary-layer assumption is no longer valid in the
region of the plume. Figure 8(b) shows that the effect
of buoyancy forces is predominant for the values of
Re and Gr considered. The assumption of negligible
curvature effect is not valid at these Grashof numbers,
so the solution to the boundary-layer equations only,
does not give valid results here. Further, it is relevant
to note that the response of Nu to the increase in
Re and Gr near 8 = 0° is somewhat different. In this
region, Nu changes only slightly with the variation of
Re and Gr. A small increase in Gr above its zero value
causes a small decrease in Nu at 6 = (0°; the values of
Nu being smaller than those of the forced convection
flow. This is mainly because the buoyancy forces have
the least influence at 8 = 0°. On the other hand, the
initial increase of Gr implies a decrease in the tem-

(b}

08

— 6r=0
0.6 50

Gr=
¢ Gr=100
04r Gr=150
Gr=200
0.2h
L . .
oI 2 3 4q 5 6 7 8

r

FIG. 4. Variation of the dimensionless temperature in the radial direction at 6 = 0° for the case of parallel
flow: (a) Re = 10; (b) Re = 50.



2534

4.0 T T T T T T
(a)

Gr=40

H. M. Babr and 1. Popr

0 T T T T T T
TS

32r .
Gr=200

FIG. 3. The radial velocity distribution at 8 = 0° for the case of parallel flow: (a) Re = 10; (b) Re = 50.

perature gradient at 6 = 0° as Fig 4(a) shows, and
accordingly causes a decrease in Nu there.

To this end, we wish to mention that although the
results for Re = 5 have not been presented in this
paper, nevertheless they are consistent in all respects
with the general trends outlined above. It may be also
opportune to point out here the similarity of these
results at moderately large values of Gr with those
of Minkowycz et al. [13] for the mixed convection
boundary-layer flow about a horizontal cylinder
buried in a fluid-saturated porous medium. On the
other side, the flow characteristics found in this paper
are qualitatively similar with those of ref. [17] for the
mixed convection flow from a cylinder immersed in
an ordinary fluid (without a porous structure).

4.3. Counter flow

The second part of this study is devoted to the
description of the counter-flow combined convection
regime. This is analysed for Re =35, 10, 20, 50 and
100, respectively, and for different values of Gr in
each case. The detailed features of the flow and heat
transfer for this flow configuration are illustrated in
Figs. 9(a)—(f) and 10(a)—(d), where we present results

[ T T T T T T
(a)
SH 4
Gr=40
30
4r 4
20
Vg 3 4
10
2| 4
o]
k i
) ) 2 L L s
oI 2 3 4 5 [} 7 8

for the streamlines and isotherms at Re = 5, 20 and
100, and for different values of Gr. As can be expected
on physical grounds, the geometry for the situation
of the counter-flow regime is in many respects different
from that occurring in the parallel flow case at the
same values of Re and Gr. The peculiar behaviour is
due to the existence of counter-rotating cells of
equal size in each side of the symmetry line 8 = 0°. An
interesting observation is the shift of these cells toward
or above the top region of the rod (§ = 180°) when
Gr is increased. The influence of the secondary flow
cells on the thermal field is easily observed in Fig. 10
where a considerable distortion of the isotherms takes
place especially at high Grashof numbers.

Some of the details of the flow and temperature
fields near the rod are presented in Figs. 11-13, where
the temperature and velocity profiles are displayed
against the radial distance r at different values of
Gr and Re. The temperature profiles are plotted for
R =10 and 20 while the velocity profiles are traced
for Re = 10 and 50. It may be seen from Figs. 11(a)
and (b) that the effect of increasing Gr is to decrease
the temperature gradient at 8 = 180°. Furthermore,
the profiles gradually change becoming increasingly

4.0

{b) "
Gr=200
3.2H 150 4
100
24 50 p
-y, .
1.6 1
0.8f b
L L L 1 " 1
ol 2 3 4 5 6 7 8

F1G. 6. The tangential velocity variation at 6 = 90° for the case of parallel flow: (a) Re = 10; (b) Re = 50.
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Table 1. Numerical values of the average Nusselt number for
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9.6

the parallel flow regime (a)
vy 8A ————— Present study
Re Gr/2Re or Nu b — Boundary - Layer solution
5 0 0 2.032 7.2 (equation (18))
5 0.5 5 2.314
5 1.0 10 2.639 6.0
5 1.5 15 2.948
5 2.0 20 3.238 N
10 0 0 2.809 v a8
10 0.5 10 3.318
10 1.0 20 3.812 3.6
10 1.5 30 4.266
10 2.0 40 4.685 2.4
20 0 0 3.996
20 0.5 20 4.807 L2
20 1.0 40 5.540
20 1.5 60 5.940 £l . . ; . L
20 20 80 6.486 0 20 40 €0 80 100 120 140 160 180
50 0 0 6.604 8
50 0.5 50 7.896
50 1.0 100 9.008 9.2
50 1.5 150 10.018 o)
50 2.0 200 11.003
100 0 0 9.952 16.81 Present study
100 0.5 100 e [ T e ntig
100 1.0 200 13.548 144} solution {equation s
100 1.5 300 15.025 =
100 2.0 400 16.430 2ol Gre= 150 =7
-~ /// z -
N 9.6L Gr=200 ’,, z ]
4 -t
4 //
steeper as Re gets larger. As Gr increases, the flow rer / //’
field near the rod surface exhibits the formation of two Vi
recirculating flow zones where the motion becomes 4'? i’ 6r=0
dominated by buoyancy forces. This effect causes the G"'°°G s
local Nusselt number Nu to increase with the increase 241 ’
of Gr in the region of § = 0° while decreasing in the o

region § = 180° as shown in Figs. 14(a) and (b). Also
presented in these figures is the boundary-layer solu-

tion obtained by using equation (18).

8

"
¢} 20 40 6 80 100 120 140 160 (80

F1G. 8. Variation of the local Nusselt number on the rod

The values of the mean Nusselt number Nu were

surface for the parallel flow: (@) Re = 10; (b) Re = 50.

20

12

0 L

Counter flow

’/./R:ﬁ’.”"

Paraliel flow

Re=100

Re =50

2.0 -1.5

Gr/ 2Re
F1G. 7. Variation of the average Nusselt number Nu with Gr/2Re for Re = 20, 50 and 100.
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(a)

(c)

(b)

(d)

FiG. 10. The isotherm pattern for the case of counter flow: (a) Re = 20, Gr = 60; (b) Re = 20, Gr = 80;

(c) Re = 100, Gr = 300; (d) Re = 100, Gr = 400. Isotherms plotted are the same as in Fig. 3.
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1.0

0.8

0.6
¢
04

20

Fic. 11. Variation of the dimensionless temperature in the radial direction at 8 = 180° for the case of
counter flow: (a) Re = 10; (b) Re = 20.

again determined and Table 2 compares the pro-
gression of Nu with Re and Gr. It is observed from
this table that an increase of Gr above its zero value
causes a decrease in Nu and this decrease may be
considered to be closely related to the secondary flow
that occurs near the rod surface. With further increase
of Gr, the average Nusselt number increases and hence
the flow field becomes more dominated by buoyancy
forces. The effects of Re and Gr/2Re on Nu for the
problem under consideration in this section are again
illustrated in Fig. 7 (on the left-hand side of this fig-
ure). In contrast to the case of a parallel flow these
curves indicate that Nu passes through a minimum at
Gr/2Re = 1.5 for each value of Re considered due
to the fact that combined convection becomes less
efficient for this value of Gr/2Re. However, the
maximum value of Nu is seen to occur at Gr =0
(forced convection flow) in the considered range of
Gr.

|2 T T T T T T
(a)
o8}
Gr=40
o4t {
v, 0
— Gr=30
Gr =20
-0.41 Gr=10 b
—0.8— 5 \ -
Gr=0
-12 1 U I | 1 — L
1 2 3 4 6 7 8

5. CONCLUSIONS

Numerical solutions to the complete Darcy and
encrgy equations along with the Boussinesq approxi-
mation have been derived for mixed convection heat
transfer from an isothermal rod of circular cross-
section. In the past, theoretical investigations of mixed
convection about horizontal cylinders embedded in
porous media were mainly centred upon the boun-
dary-layer approximations. We have presented here
results obtained over a wide range of Grashof and
Reynolds numbers. The local Nusselt number results
are compared with previous published theoretical pre-
dictions based on the boundary-layer theory obtained
by Cheng [12] and Minkowycz et al. [13]. The agree-
ment is good over most of the rod surface except for
a small region in the vicinity of 8 = 0° where the
boundary-layer approximations are not valid.

In summary, the present study reveals that the

Gr=200

Gr=150
Gr =100 j
Gr=50

F1G. 12. The radial velocity distribution at 8 = 180° for the case of counter flow: (a) Re = 10; (b) Re = 50.
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FiG. 13. The tangential velocity variation at § = 90° for the counter flow: (a) Re = 10; (b) Re = 50.

boundary-layer solutions to problems of this type two flow configurations of parallel and counter-flow
give good results for most practical purposes even regimes. The method employed works efficiently and
at low Grashof numbers. The results show how the quite satisfactorily in analysing the entire flow field
theories at both low and high Grashof numbers are  including the plume and the recirculating flow zones.
approached. Moreover, it is shown that applying such a method to

The effects of the interaction between the forced this mixed convection problem not only provides
and buoyancy driven flows on the velocity field and  much useful information about the physics of the flow
heat transfer characteristics are reported and the phys-  phenomenon but also provides solutions which can
ics of the mixed convection flow is explained for the be useful in future computational approaches. For
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FIG. 14. Variation of the local Nusselt number on the rod surface for the counter flow: (a) Re = 10; (b)
Re = 50.
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Table 2. Numerical values of the average Nusselt number for

the counter-flow regime

Re Gr/2Re Gr Nu
5 0 0 2.032
5 0.5 5 1.644
5 1.0 10 1.359
5 1.5 15 1.345
5 20 20 1.254
10 0 0 2.809
10 0.5 10 2.214
10 1.0 20 1.706
10 1.5 30 1.644
10 2.0 40 1.839
20 0 0 3.996
20 0.5 20 3.140
20 1.0 40 2.430
20 1.5 60 2.060
20 20 80 2.700
20 2.5 100 4.100
50 0 0 6.604
50 0.5 50 5.014
50 1.0 100 3.660
50 1.5 150 2.884
50 2.0 200 4.840
100 0 0 9.952
100 0.5 100 7.440
100 1.0 200 5.104
100 1.5 300 3.887
100 20 400 6.956

those interested in similar problems, the tabulated
data and the accompanied figures provide enough test
cases.
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CONVECTION MIXTE AUTOUR D’UNE TIGE HORIZONTALE NOYEE DANS UN
MILIEU POREUX

Résumé—Ce papier rapporte les résultats d'une étude numérique du transfert thermique par convection
mixte autour d’une tige cylindrique horizontale noyée dans un milieu poreux. La température de la tige
est supposée Etre initialement celle du milieu et portée soudainement 4 une valeur constante plus élevée.
Le probléme de régime permanent a été résolu par la méthode de troncature de série en combinaison avec
un schéma aux différences finies pour les deux configurations de régime cocourant et contrecourant. Les
champs de vitesse et de température et les variations de flux thermique moyens et locaux pour un large
domaine des nombres de Reynolds, de Grashof et de paramétre de flottement sont considérés en détail
pour un nombre de Prandtl de 0,7. Une des configurations intéressantes trouvées est la possibilité d’un
écoulement de recirculation prés de la demi-surface supérieure de la tige dans le cas du régime & contre-
courant. La méthode numérique et les résultats présentés concernent un manque dans la littérature sur 'un
des problémes les plus fondamentaux dans le domaine de la convection mixte dans un milieu poreux.

GEMISCHTE KONVEKTION AN EINEM ISOTHERMEN, HORIZONTALEN, IN EIN
POROSES MEDIUM EINGEBETTETEN STAB

Zusammenfassung—In diesem Beitrag wird iiber die Ergebnisse einer numerischen Untersuchung der
Wirmeiibertragung durch gemischte Konvektion an einem horizontalen rotationssymmetrischen Stab, der
in ein pordses Medium eingebettet ist, berichtet. Es wird zundchst angenommen, daB die Stabtemperatur
gleich derjenigen des Mediums ist und dann plétzlich auf einen konstanten hoheren Wert verindert wird.
Das stationire Problem wurde mit einer Reihenentwicklung in Kombination mit einem Finite-Differenzen-
Verfahren sowoh! fiir Gebiete mit paralleler Strémung als auch fir solche mit Gegenstrémung geldst,
Sowohl die Stromungs- und Temperaturfelder als auch die Verinderung der mittleren und lokalen
Wirmeiibergangskoeffizienten wurden in einem groBen Bereich von Reynolds-Zahl, Grashof-Zahl und
Auftriebsparametern fir eine Prandtl-Zahl von 0,7 detailliert untersucht. Eine der interessanten zu
beobachtenden Erscheinungen in Bereichen mit Gegenstromung ist das Auftreten einer Riickstrémungs-
zone an der oberen Hilfte der Staboberfiiche. Das numerische Verfahren und die vorgestellten Ergeb-
nisse fiillen eine Liicke in der Literatur fiir eines der grundlegendsten Probleme auf dem Gebiet der
gemischten Konvektion in porésen Medien.

CMENAHHA S KOHBEKLMS OT HU30TEPMHYECKOI'O 'OPH30HTAJIBHOI'O
CTEPXHA, IOMEIMIEHHOI'O B ITOPHCTYIO CPEAY

Amoraums—TIpEBOAATCA Pe3yNbTATH YHCIEHHOrO HCC/IEAOBAHAS TEMIONEPEHOCA IPH CMeIIaHHOH KOH-
BEKIIMH OT FOPH3OHTANLHOIO CTEPKHA KPYIJIOro CeYeHHA, IOMEICHHOro B NopHCTy1o cpeay. Ipeanona-
FaeTcs, YTO BHAYANE CTEPXEHDb HMEET TY XKe TEMIEPaTypy, YTC H NICPHCTAd Cpeaa, & 3aTeM MIHOBEHHO
Harpesaerca 1o Gosee BrICOKOH mOcTOsHHOR Temmepayphl. CTauHoHapHas 3a/1a4a pellaeTcs METOIOM
YCEUCHHA PAXOB B KOMORHALMM C MCNONB30OBAHMEM ROHEUHO-PAIHOCTHON CXeMB A% JBYX KOHurypa-
it MOTOKA MpPH CHYTHOM H BCTPEYHOM pexuMax Tedenus. Jins wacna IMpanarm, paskoro 0.7, noa-
pobHO MCCNENOBAJHCh NHHAMHYCCKHE H TEMICPAaTYpHBIE IO/, M3MEHEHHe CPEAHAX H JIOKAJILHBIX
HHTEHCHBHOCTEH TETIONEPEHOCa B IURPOKKX ARanasoHax wHcel Pelinonbaca u ['pacroda, a Takxe napa-
MeTpa fiaByuecTH. OHEM ¥3 HHTEPECHBIX Pe3/IbTATOR PaGOTHI ABMIIOCH TO, ¥TO BO/M3H BepxHeil nojo-
BHHBI CTEPXKHSA BO BCTPEYHOM PEXHME TEHCHHUS BO3HHKACT PELHPKY/IANHOHHAS 30HA, YHCICHHRIA MeTO
¥ DpenCTAB/ICHHBIE PE3y/ILTATH 3ANONEMOT HMEIOmMiics B aTepaType Npoben no ool K3 OCHOBHBIX
npofnem B 061aCTH CMELIAHHON KOHBEKIHH B NOPHCTHX CpeAax.
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