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Abstract-This paper reports the results of a numerical investigation of mixed convection heat transfer 
from a horizontal rod of circular cross-section that is embedded in a porous medium. The rod temperature 
is first assumed to be the same as that of the medium and then suddenly increased to a higher constant 
value. The steady-state problem has been solved by the method of series truncation in combination with 
a finite-difference scheme for the two flow configurations of parallel and counter-flow regimes. The flow 
and thermal fields as well as the variations of the average and local heat transfer rates with a wide range 
of Reynolds number, Grashof number and buoyancy parameter have been examined in detail for a Prandtl 
number of 0.7. One of the interesting features found is the occurrence of a recirculating flow zone near the 
upper half surface of the rod in the case of the counter-flow regime. The numerical method and the results 
presented fill in a gap in the literature on one of the most fundamental problems in the field of mixed 

convection in porous media. 

1. INTRODUCTION 

INTENSIVE interest has been shown in recent years in 
the area of convective heat transfer in fluid-saturated 
porous media. This is quite natural because of the 
numerous and wide-ranging engineering applications 
of convective flow through porous media. For exam- 
ple, this class of phenomena is encountered in indus- 
trial and geophysical contexts such as petroleum res- 
ervoir modelling, thermal insulation techniques, 
geothermal activities, chemical and nuclear engin- 
eering, solar power collectors, regenerative heat ex- 
changers containing porous materials, burying of 
drums containing heat generating chemicals in the 
earth and underground spread of pollutants. Bejan 
[l], Cheng [2] and Nield [3] have recently provided 
extensive state-of-the-art reviews on convective heat 
transfer in fluid-saturated porous media. 

One of the most basic problems in porous media 
which has important applications to the design of 
canisters for nuclear waste disposal systems is the natu- 
ral convection from a horizontal circular cylinder 
embedded in a porous medium. Schrok et al. [4] and 
Femandez and Schrok [5] have carried out experi- 
ments and numerical calculations for a cylinder buried 
beneath a permeable, horizontal surface. Their work 
resulted in a heat transfer correlation fitting the deter- 
mined experimental and numerical data within a stan- 
dard deviation of 11.4%. Unsteady heat transfer from 
a circular cylinder immersed in a porous medium 
through which a liquid is flowing according to Darcy’s 

law in a potential flow has been studied by Sano [6]. 
He derived asymptotic solutions for large and small 
Peclet numbers, Pe, for the case where the unsteady 
temperature field is produced by a step change in 
wall temperature. The former solution is valid for 
Pe > 200 and the latter one for Pe < 0.1, respectively. 
The series solution for small time, which is valid for 
all values of Pe, is first obtained. Euler’s trans- 
formation is then applied to the series solution for the 
average Nusselt number resulting in improving the 
convergence criterion as well as giving satisfactory 
results for most values of time. Similarity solutions 
of the governing equations that describe the steady 
natural convection about a circular cylinder in a 
porous medium were obtained by Merkin [A, Nilson 
[8] and recently by Fand et al. [9], who relied on the 
framework provided by the boundary-layer theory. 
In ref. [9] the authors have also presented interesting 
experimental results for porous media consisting of 
randomly packed glass spheres saturated by either 
water or silicone oil. More recently, the cylinder 
geometry was the subject of a detailed numerical study 
[lo], which obtained, at large Rayleigh numbers, the 
second-order boundary-layer solution, too. Ingham 
et aI. [l l] have reported analytical and numerical 
solutions for the time-dependent natural convection 
boundary layer due to sudden imposition of a tem- 
perature difference between the cylinder surface and 
the fluid-saturated medium. 

Despite the strong interest expressed by the fluid 
mechanics community in the problem of mixed con- 
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NOMENCLATURE 

radius of the rod 
gravitational acceleration 
modified Grashof number 
local and average heat transfer 
coefficients 
fluid-porous matrix conductivity 
porous medium permeability 
local and average Nusselt numbers 
Prandtl number 
heat transfer rate 
dimensionless radial coordinate 
Reynolds number, Zau,/v 
dimensionless time 
dimensional temperature 
free stream velocity 
Darcian dimensionless radial and 
transverse components of velocity. 

Greek symbols 
thermal diffusivity 

; coefficient of thermal expansion 
9 angular coordinate 
V kinematic viscosity 

: 

logarithmic radial coordinate 
dimensionless temperature 

V+ dimensionless stream function. 

Subscripts 
r radial direction 
S surface condition 
e transverse direction 
M free stream condition. 

vection flow past a horizontal rod or cylinder 
immersed in a Newtonian fluid, the corresponding 
problem of mixed convection in a porous medium has 
received comparatively much less attention. To the 
authors’ knowledge, only the papers by Cheng [12], 
Minkowycz et al. [13] and Huang et al. [14] exist in 
the literature on the problem of mixed convection past 
a horizontal cylinder in the presence of boundary- 
layer flows. Reference [ 121 reports similarity solutions 
for the steady mixed convection flow about an iso- 
thermal cylinder while in ref. [13] the authors have 
derived approximate solutions of the boundary-layer 
equations based on the local similarity and non-simi- 
larity methods for the problem of mixed convection 
from a non-isothermal cylinder. Numerical solutions 
were carried out up to the third level of truncation. In 
ref. [14] the authors extended the problem described 
in ref. [12] to the case of a uniform surface heat flux. 
The governing boundary-layer equations were solved 
by employing an implicit finite-difference method. All 
three papers treated the case of parallel flow only. 
However, no prior study was done for this problem 
to investigate the accuracy and limitations of the 
boundary-layer simplifications as well as the assump- 
tions of potential flow outside the boundary layer. It 
is, therefore, the aim of this paper to carry out a 
detailed numerical analysis of the combined con- 
vection heat transfer from an isothermal horizontal 
rod of circular cross-section embedded in a porous 
medium for the two cases when the forced flow is 
directed either vertically upward (parallel flow) or 
vertically downward (counter flow), respectively. We 
would like to emphasize that the investigation is based 
on the solution of the full equations of mass, momen- 
tum and energy, and not on the boundary-layer equa- 
tions and so the gravitational force normal to the 

heated surface of the rod is not neglected. The govern- 
ing equations were solved using a finite-difference 
scheme similar to that developed in refs. [IS, 161 and 
applied successfully to some viscous mixed convection 
problems (non-porous medium) in refs. [17-191. The 
velocity and thermal fields are developed in time until 
reaching the steady-state conditions. The numerical 
calculations include details of the steady-state flow 
behaviour as well as results for the local and average 
Nusselt numbers as a function of both Grashof and 
Reynolds numbers. 

The purpose of the present work is twofold : first to 
study the case of parallel flow in order to get infor- 
mation concerning the variation of the local and aver- 
age Nusselt numbers over the rod surface, and second 
to present results for the case of the counter-flow 
regime and show the effect of different parameters on 
streamline and isotherm patterns. In particular, we 
focus attention on the flow region near the upper and 
lower stagnation points. Sample results of the heat 
transfer rate are presented in tables for a range of 
Reynolds and Grashof numbers. We believe that such 
tabulations might serve as a reference against which 
other approximate solutions or experimental data can 
be compared in the future. 

2. BASIC EQUATIONS 

Consider a horizontal rod of radius a embedded 
in a fluid-saturated porous medium of uniform free 
stream velocity U, and temperature T,. The free 
stream is directed either vertically upward or vertically 
downward, respectively, as shown in Fig. 1. Let the 
temperature of the rod be suddenly increased to and 
maintained at a constant value T, (> T,) for all sub- 
sequent times, which will cause transient thermal con- 
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Parallel flow Counter flow 

FIG. 1. Coordinate systems for parallel and counter flows. 

vection in the medium. The line 0 = 0” is considered 
to be the radius through the rear-most point on the 
rod surface viewed from the upstream direction (i.e. 
the free stream will always be in the direction 0 = 00). 
In the porous medium, Darcy’s law is assumed to 
hold, the fluid is presumed to be a normal Boussinesq 
fluid, and the viscous drag and inertia terms of the 
momentum equations are neglected because their 
magnitudes are of small order compared to other terms 
for low Darcy numbers and low particle Reynolds 
numbers. Owing to the last assumption, velocity slip 
at the rod surface is permitted. 

With these assumptions, the conservation equa- 
tions for mass, momentum and energy for unsteady 
flow in an isotropic porous medium can be written in 
polar coordinates (r’, 0) as 

$ is related to the velocity components by 

V, = r+ I a*glae, V@ = - a*‘/arJ. (3) 

The equations are further transformed to their non- 
dimensional form by introducing the following dimen- 
sionless quantities : 

t = t’u,/a, r = f/a, v, = v:,/u,, 

ue = 44~ J/ = V/au,, 4 = (T- T,)/(T, - T,). 

Using the above variables, equations (1) and (2) 
become 

a4 cos e 
V2**g $sin8+a81 

( > 
=0 (4) 

(1) 

i?T 
z+v;,;+;;=aV’2T (2) 

where 

a2 i a i a2 
v’2=jp+~~+F;i@ 

t’ is the time, 0; and vi are velocities in the r’- and B- 
directions, T the temperature and the other variables 
are defined in the Nomenclature. The stream function 

where 

Gr = gj?K(Ts - Tm)(2a)/v2 

is the modified Grashof number 

Re = Zau,lv 

is the Reynolds number, and 

Pr = v{a 

is the Prandtl number. It should be noted that the sign 
of the buoyancy term in equation (4) depends on 
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the flow regime and is positive for parallel flow and 
negative for counter flow. 

2eX 9, = tt A(!!$ -+G+ -tZ” (12c) 

The appropriate boundary conditions of equations 
(4) and (5) are where S,, Z0 and Z, are functions of 5 and t defined 

v, = 0 and 4 = I at r = 1 

v, -+ cos 8, vu+-sine, and $-+O as r--*00. agO ag,+, ag,-, 
-&at_+~-ag 

(6b) 
1 

In the next section, we rely on a direct numerical 
solution to determine the basic features of the steady- 
state mixed convection phenomena taking place in the 
porous region adjacent to the rod surface. 

+(~-l).%-,+(~+l)g”+, I (134 
-I 

ah 
ffl”ag 

> 
(13b) 

3. METHOD OF SOLUTION N 

The governing equations (4) and (5) are solved 
Z(t,f) = -mT, 

ag, . 
~(~l;+if;) 

using essentially the same finite-difference scheme as 
that described in refs. [17-191. In this solution method 
the modified polar coordinates (t,e) are employed, 
where 5 = lnr and accordingly the above equations 
(4) and (5) are transformed to 

raf; af; 
+mS,L$ +sgn(m-n)% 

11 
(13c) 

$+$*e<g ~sin0+~cos0 
( > 

=0 (7) 

e2@ _ at -&($+!d$)-;$+~~ (8) 

where the dimensionless radial and transverse velocity 
components v, and v0 become 

v,= r-l a*/ae = e-'a+/ae, 

u. = - ai@r = - eCc a*/ag. (9) 

Boundary conditions (6) can be written as 

ti =a+/as=o, 4=i at 5 =o (loa) 

e-c a+/ae+cose, eCc a*jay+ sine, 

and 4-O as t+co. (lob) 

Since the flow and temperature fields are symmetric 
about a vertical line passing through the centre of 
the rod, the following series expansion of the stream 
function t+Q and temperature C$ is assumed 

(lla) 
“= 1 

4 = 12goK 0 + 2 &(5, t) cosn~. (1 lb) 
n=l 

The same truncated Fourier series has been used by 
Ingham et al. [ll] for studying the free convection 
limit (Re = 0) of the problem. When equations (11) 
are substituted into equations (7) and (8), and like 
terms in sin and cos equated, the following differential 
equations can be deduced : 

a*f, p -n’f.&S, = 0 (124 

a e2d& 2 ash 
at 

=--7+z, 
RePr a[ (12b) 

where 

6, = 
{ 

1 forn=l 

0 for n # 1’ 
i = Im--nl, j= mfn 

and sgn (m-n) denotes the sign of the term (m-n). 
The appropriate boundary conditions of functions 

S., go and gn are 

fn=gn=O and go=2 at <=O (14a) 

fn --* 6, es, af,/ag + 6, es, 

and go,gn+O as r-tco. (14b) 

For engineering applications, we are often con- 
cerned with the effect of fluid motion on the heat 
transfer from the rod surface. This can be evaluated 
by computing the local Nusselt number Nu and the 
mean Nusselt number z averaged over the rod sur- 
face which are given by 

Nu = Zah/k 

%i = 2at?/k > 
(15) 

where h and h represent the local and average heat 
transfer coefficients, which are given by 

2n 
h = q,/(T, - T,), li = 1/27r 

s 
h de, 

0 

and q8 = -k[aT/ar’],.=, (16) 

From equations (1 l), (15) and (16) it follows that 
the Nusselt numbers can be expressed in the form : 

agO N ah 
-x %$lnnO i:=. 

1 
(17a) 

(17b) 

As mentioned before, a complete numerical solu- 
tion to equations (12) with boundary conditions (14) 
is obtained by using a method similar to that given in 
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refs. [ 17-191; its detailed formulation is omitted here 
since it is well described in the above mentioned ref- 
erences. 

4. RESULTS AND DISCUSSION 

4.1. Introductory comments 
The combined convection heat transfer from a hori- 

zontal rod embedded in a ~uid-saturated porous 
medium is studied numerically for the two cases when 
the forced flow is directed either vertically upward 
(parallel flow) or vertically downward (counter flow). 
The numerical step-by-step procedure has been per- 
formed right up to the steady-state solution and it is 

shown that this flow is dependent on the Reynolds 
number, Re, Grashof number, Gr, Prandtl number 
Pr, in addition to the direction of the forced flow. 
Moreover, the quantity GrjRe in equation (4) is a 
measure of relative importance of free to forced con- 
vection, and is one of the controlling parameters for 
the present problem. For each of the cases considered 
in this paper, the steady-state regime was achieved 
after a certain time from the start of the motion. This 
time varies from one case to another, the maxims 
time needed being t = 40. For all the results which are 
presented here, the Prandtl number considered is 0.7 
but the general ideas hold for other values, too. Let 
us now discuss the results in each of its two parts of 
parallel flow and counter flow, respectively. 

I- 

(a) 
L 

I- 

(b) 

fc) 

I- 

(4 

FIG. 2. The streamline pattern for the case of parallel flow : (a) Re = 20, Gr = 0 ; (b) Re = 20, Gr = 40; 
(c) Re = 20, Gr = 80; (d) Re = 100, Gr = 400. Streamlines plotted are $ = -2.0, - 1.8, - 1.6, - 1.4, 
-1.2, -1.0, -0.8, -0.6, -0.4, -0.2, -0.1, -0.05, 0, 0.05, 0.1, 0.2, 0.4, 0.6. 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 

2.0, 
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(a) 

(b) (4 

FIG. 3. The isotherm pattern for the case of parallel flow : (a) Re = 20, Gr = 0 ; (b) Re = 20, Gr = 40 ; (c) 
Re = 20, Gr = 80; (d) Re = 100, Gr = 400. Isotherms plotted are C$ = 0.1,0.2,0.3,. . . ,0.9. 
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4.2. Parallel flow 

The numerical solution of the steady flow over the 
rod is obtained for the parallel flow regime at Reyn- 
olds numbers of 5, 10, 20, 50 and 100, and for para- 
metric values of the Grashof number in each case. 
The streamline and isotherm patterns for the cases of 
Re = 20 and 100 and for various values of Gr are 
presented in Figs. 2(a)-(d) and 3(a)-(d), respectively. 
We observe from these figures that near the line 0 = 0” 
a buoyant plume exists above the rod. The width of 
the plume decreases as Gr increases. The isotherms 
given in Fig. 3 are seen to be distorted in accordance 
with the flow patterns. The temperature distribution 
resembles what would be found near a line heat source 
where the heat is convected from the rod in a well- 
defined plume. As Gr becomes larger a thick boundary 
layer develops around the rod and the 4 = 0.9 iso- 
therm gets closer to the rod surface near 0 = 180” as 
shown in Fig. 3(d). This fact indicates higher tem- 
perature gradient and consequently greater heat 
transfer rates there. 

Figures 4(a) and (b) represent the temperature 
distribution at 0 = 0” as a function of the radial 
distance r for different values of Gr and for Re = 10 
and 50. If we consider the forced convection regime 
(Gr/2Re = 0) as the standard case, we first note from 
Fig. 4(a) that the buoyancy forces increase the tem- 
perature along 0 = 0”. It is also seen that the tem- 
perature decreases almost linearly with the radial dis- 
tance indicating that conduction is predominant. 
Then at higher Reynolds numbers (Re > 50) Gr has 
a stronger effect on the temperature distribution. The 
temperature profiles displayed in Fig. 4(b) for Re = 50 
are very similar to those predicted by the boundary- 
layer solution obtained by Minkowycz et al. [ 131. The 
same trend is also observed in Figs. 5(a) and (b) as well 
as in Figs. 6(a) and (b) for the radial and tangential 
velocity components, the latter being plotted along the 
radial line 8 = 90” where the tangential component 
increases greatly close to the surface of the rod. 

The calculated values of the average Nusselt num- 
ber % are listed in Table 1 from which it can be - 
concluded that Nu, at a given Re, increases con- 

tinuously with the increase of Gr. Typical results of 
the calculations for % corresponding to Re = 20, 50 
and 100 are also plotted in Fig. 7 as a function of 
Gr/2Re ( on the right-hand side of this figure). One 
can see here the gradual increase of % with the in- 
crease in Re. 

In Figs. 8(a) and (b), we compare the variation of 
the local Nusselt number Nu with the angle 8 for 
different Grashof numbers when Re = 10 and 50. The 
numerical solution to the boundary-layer equations 
obtained by Cheng [12] and Minkowycz et al. [13] is 
also included for comparison. According to ref. [ 121, 
the local Nusselt number distribution is given by 

Nu = 2.828(PrRe)‘/‘sin(0/2)[-4’(O)] (18) 

where the numerical values of the dimensionless tem- 
perature gradient 4’ are given in ref. [20] for different 
values of Gr/Re. Figure 8 clearly shows that Nu 
decreases monotonically from the highest value at 
6’ = 180” and reaches a minimum at 0 = 0”. This 
behaviour agrees reasonably well, both qualitatively 
and quantitatively, with the variation of Nu predicted 
from the boundary-layer solution over all the rod 
surface except near the top region (0 = 0’). The value 
of Nu = 0 at 0 = 0” obtained from the boundary- 
layer solution (equation (18)) is questionable since the 
boundary-layer assumption is no longer valid in the 
region of the plume. Figure 8(b) shows that the effect 
of buoyancy forces is predominant for the values of 
Re and Gr considered. The assumption of negligible 
curvature effect is not valid at these Grashof numbers, 
so the solution to the boundary-layer equations only, 
does not give valid results here. Further, it is relevant 
to note that the response of Nu to the increase in 
Re and Gr near 0 = 0” is somewhat different. In this 
region, Nu changes only slightly with the variation of 
Re and Gr. A small increase in Gr above its zero value 
causes a small decrease in Nu at 0 = 0” ; the values of 
Nu being smaller than those of the forced convection 
flow. This is mainly because the buoyancy forces have 
the least influence at 0 = 0”. On the other hand, the 
initial increase of Gr implies a decrease in the tem- 

1.0 1 

0.6 

0.6 

9 

0.4 

0 
2 3 4 5 6 7 a 

FIG. 4. Variation of the dimensionless temperature in the radial direction at 0 = 0” for the case of parallel 
flow : (a) Re = 10 ; (b) Re = 50. 
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FIG. 5. The radial velocity distribution at 0 = 0” for the case of parallel flow : (a) Re = 10; (b) Re = 50. 

perature gradient at 6 = 0” as Fig 4(a) shows, and 
accordingly causes a decrease in NM there. 

To this end, we wish to mention that although the 
results for Re = 5 have not been presented in this 
paper, nevertheless they are consistent in all respects 
with the general trends outlined above. It may be also 
opportune to point out here the similarity of these 
results at moderately large values of Gr with those 
of Minkowycz et al. [13] for the mixed convection 
boundary-layer flow about a horizontal cylinder 
buried in a fluid-saturated porous medium. On the 
other side, the flow characteristics found in this paper 
are qualitatively similar with those of ref. [ 171 for the 
mixed convection flow from a cylinder immersed in 
an ordinary fluid (without a porous structure). 

4.3. Counter jlow 
The second part of this study is devoted to the 

description of the counter-flow combined convection 
regime. This is analysed for Re = 5, 10, 20, 50 and 
100, respectively, and for different values of Gr in 
each case. The detailed features of the flow and heat 
transfer for this flow configuration are illustrated in 
Figs. 9(a)-(f) and 10(a)-(d), where we present results 

6 
I(o) 

5- 

----Gr-40 

I 
Ol 

I 
2 3 4 5 6 7 6 

4’o (bl 

3.2 - 

GI-200 

for the streamlines and isotherms at Re = 5, 20 and 
100, and for different values of Gr. As can be expected 
on physical grounds, the geometry for the situation 
of the counter-flow regime is in many respects different 
from that occurring in the parallel flow case at the 
same values of Re and Gr. The peculiar behaviour is 
due to the existence of counter-rotating cells of 
equal size in each side of the symmetry line 6’ = 0”. An 
interesting observation is the shift of these cells toward 
or above the top region of the rod (0 = 180”) when 
Gr is increased. The influence of the secondary flow 
cells on the thermal field is easily observed in Fig. 10 
where a considerable distortion of the isotherms takes 
place especially at high Grashof numbers. 

Some of the details of the flow and temperature 
fields near the rod are presented in Figs. 11-13, where 
the temperature and velocity profiles are displayed 
against the radial distance r at different values of 
Gr and Re. The temperature profiles are plotted for 
R = 10 and 20 while the velocity profiles are traced 
for Re = 10 and 50. It may be seen from Figs. 11(a) 
and (b) that the effect of increasing Gr is to decrease 
the temperature gradient at 0 = 180”. Furthermore, 
the profiles gradually change becoming increasingly 

~61-200 
3.2 

2.4 

-vs 
1.6 

0 
2 3 4 5 6 7 8 

I 

FIG. 6. The tangential velocity variation at 8 = 90” for the case of parallel flow : (a) Re = 10 ; (b) Re = 50. 
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Table 1. Numerical values of the average Nusselt number for 
the parallel flow regime 

Re Gr/2Re Gr Nu 

5 
5 
5 
5 
5 

10 
10 
10 
10 
10 

20 
20 
20 
20 
20 

50 
50 
50 
50 
50 

100 
100 
100 
100 
100 

0 
0.5 
1.0 
1.5 
2.0 

0 
0.5 
1.0 
1.5 
2.0 

0 
0.5 
1.0 
1.5 
2.0 

0 
0.5 
1.0 
1.5 
2.0 

0 
0.5 
1.0 
1.5 
2.0 

0 2.032 
5 2.314 

10 2.639 
15 2.948 
20 3.238 

0 2.809 
10 3.318 
20 3.812 
30 4.266 
40 4.685 

0 3.996 
20 4.807 
40 5.540 
60 5.940 
80 6.486 

0 
50 

100 
150 
200 

0 
100 
200 
300 
400 

6.604 
7.896 
9.008 

10.018 
11.003 

9.952 
11.930 
13.548 
15.025 
16.430 

Nli 

NU 

steeper as Re gets larger. As Gr increases, the flow 
field near the rod surface exhibits the formation of two 
recirculating flow zones where the motion becomes 
dominated by buoyancy forces. This effect causes the 
local Nusselt number Nu to increase with the increase 
of Gr in the region of 19 = 0” while decreasing in the 
region 0 = 180” as shown in Figs. 14(a) and (b). Also 
presented in these figures is the boundary-layer solu- 
tion obtained by using equation (18). 

The values of the mean Nusselt number Nu were 

gs (a) 

6.4 

t 

- Present study 

------- Boundory - layer solution 

7.2 
t 

(equation (16)) 

6.0 

3.6 

\ \I ’ GI.0 

0 0 13 13 0 

0 20 40 60 60 100 120 140 160 I 

B 

19.2 
tb) 

16.6 - - Present study 

------- Boundary-layer 

14.4 
solution Iequation( 

12.0 

9.6 

7.2 

2.4 

0 20 40 60 60 100 120 140 160 16’ 

FIG. 8. Variation of the local Nusselt number on the rod 
surface for the parallel flow : (a) Re = 10; (b) Re = 50. 

20 

counter flow Parallel flow 

16 - 

0 1 I I I I I 
-2.0 - 1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 

Gr/2Re 

FIG. 7. Variation of the average Nusselt number Nu with Gr/ZRe for Re = 20,50 and 100. 
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(b) 
.- 

(c) (f) 

FIG. 9. The streamline pattern for the case of counter flow : (a) Re = 5, Gr = 20 ; (b) Re = 20, Gr = 20 ; 
(c) Re = 20, Gr = 60 ; (d) Re = 20, Gr = 80 ; (e) Re = 100, Gr = 300 ; (f) Re = 100, Gr = 400. Streamlines 

plotted are the same as in Fig. 2. 
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(b) 

(cl 

(d) J 
FIG, 10. The isotherm pattern for the case of counter flow : (a) Re = 20, Gr = 60 ; (b) Re = 20, Gr = 80 ; 

(c) Re = 100, Gr = 300; (d) Re = 100, Gr = 400. Isotherms plotted are the same as in Fig. 3. 
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I 2 3 4 5 6 7 6 

r I 

FIG. 11. Variation of the dimensionless temperature in the radial direction at 0 = 180” for the case of 
counter flow: (a) Re = 10; (b) Re = 20. 

again determined and Table 2 compares the pro- 
gression of % with Re and Gr. It is observed from 
this table that an increase of Gr above its zero value 
causes a decrease in Nu and this decrease may be 
considered to be closely related to the secondary flow 
that occurs near the rod surface. With further increase 
of Gr, the average Nusselt number increases and hence 
the flow field becomes more dominated by buoyancy 
forces. The effects of Re and Gr/2Re on z for the 
problem under consideration in this section are again 
illustrated in Fig. 7 (on the left-hand side of this fig- 
ure). In contrast to the case of a parallel flow these 
curves indicate that % passes through a minimum at 
GrJ2Re = 1.5 for each value of Re considered due 
to the fact that combined convection becomes less 
efficient for this value of Gr/2Re. However, the 
maximum value of % is seen to occur at Gr = 0 
(forced convection flow) in the considered range of 
Gr. 

1.2 
(a) 1 

-1.2 'I 
2 3 4 5 6 7 6 

I 

5. CONCLUSIONS 

Numerical solutions to the complete Darcy and 
energy equations along with the Boussinesq approxi- 
mation have been derived for mixed convection heat 
transfer from an isothermal rod of circular cross- 
section. In the past, theoretical investigations of mixed 
convection about horizontal cylinders embedded in 
porous media were mainly centred upon the boun- 
dary-layer approximations. We have presented here 
results obtained over a wide range of Grashof and 
Reynolds numbers. The local Nusselt number results 
are compared with previous published theoretical pre- 
dictions based on the boundary-layer theory obtained 
by Cheng [12] and Minkowycz et al. [13]. The agree- 
ment is good over most of the rod surface except for 
a small region in the vicinity of 0 = 0” where the 
boundary-layer approximations are not valid. 

In summary, the present study reveals that the 

1.6 

1.2 

0.6 

0.4 

"r 0 

-0.4 

-0.6 

FIG. 12. The radial velocity distribution at 0 = 180” for the case of counter flow : (a) Re = 10 ; (b) Re = 50. 
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FIG. 13. The tangential velocity variation at 8 = 90” for the counter flow: (a) Re = 10; (b) Re = 50. 

boundary-layer solutions to problems of this type 
give good results for most practical purposes even 
at low Grashof numbers. The results show how the 
theories at both low and high Grashof numbers are 
approached. 

The effects of the interaction between the forced 
and buoyancy driven flows on the velocity field and 
heat transfer characteristics are reported and the phys- 
ics of the mixed convection flow is explained for the 

two flow configurations of parallel and counter-flow 
regimes. The method employed works efficiently and 
quite satisfactorily in analysing the entire flow field 
including the plume and the recirculating flow zones. 
Moreover, it is shown that applying such a method to 
this mixed convection problem not only provides 
much useful information about the physics of the flow 
phenomenon but also provides solutions which can 
be useful in future computational approaches. For 

6A ( 0 ) (b) 

5.6 

i 

- Present study 11.2 - 

------- Boundary-layer solution 

4.6 
(equation (18)) 9.6 

I 

------_ 

Present study 

Boundary-Layer 

solution 

Nu 3.2 
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FIG. 14. Variation of the local Nusselt number on the rod surface for the counter flow : (a) Re = 10; (b) 
Re = 50. 
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Table 2. Numerical values of the average Nusselt number for Flows in Porous Media, D.S.I.R. Wellington, New Zea- 
the counter-flow regime land (1985). 

4. V. E. Schrok, R. T. Femandez and K. Kesavan, Heat 
transfer from cylinders embedded in a liquid tilled 
porous medium, Proc. Int. Heaf Transfer Conf., Paris- 
Versailles, Vol. VII, CT-3.6 (1970). 
R. T. Fernandez and V. E. Schrok, Natural convection 
from cylinders buried in a liquid-saturated porous 
medium, Proc. Int. Heat Transfer Conf., Munich, Vol. 
II, pp. 335-340 (1982). 

Re Gr/2Re Gr Nu 

5 
5 
5 
5 
5 

10 
10 
10 
10 
10 

20 
20 
20 
20 
20 
20 

50 
50 
50 
50 
50 

100 
100 
100 
100 
100 

0 
0.5 
1.0 
1.5 
2.0 

0 
5 

10 
15 
20 

0 
10 

2.032 
1.644 
1.359 
1.345 
1.254 

0 
0.5 
1.0 
1.5 
2.0 

2.809 
2.214 

20 1.706 
30 1.644 
40 1.839 

0 0 3.996 
0.5 20 3.140 
1.0 40 2.430 
1.5 60 2.060 
2.0 80 2.700 
2.5 100 4.100 

0 
0.5 
1.0 
1.5 
2.0 

0 
0.5 

0 
50 

100 
150 
200 

0 
100 

6.604 
5.014 
3.660 
2.884 
4.840 

9.952 
7.440 
5.104 
3.887 
6.956 

1.0 
1.5 
2.0 

200 
300 
400 

those interested in similar problems, the tabulated 
data and the accompanied figures provide enough test 
cases. 
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CONVECTION MIXTE AUTOUR DUNE TIGE HORiZONTALE NOYEE DANS UN 
MILIEU POREUX 

SsumsUe papier rapporte les r&ultats dune etude num&ique du transfert thermique par convection 
mixte amour d’une tige cylindrique horizontale noy&e dans un milieu porew. La temperature de la tige 
est suppode etre initialement celle du milieu et port&e soudainement $ une valeur co&ante plus Bevie. 
Le probieme de regime permanent B it& &olu par la m&hode de troncature de drie en combinaison avec 
un schema aux differences finies pour les deux configurations de regime cocourant et contrecourant. Les 
champs de vitesse et de temperature et les variations de flux thermique moyens et locaux pour un large 
domaine des nombres de Reynolds, de Grashof et de paramktre de Aottement sent consider&s en detail 
pour un nombre de Prandtl de 0,7. Une des configurations interessantes trouvEes est la possibilitk d’un 
&oulement de recirculation pres de la demi-surface sup&rieure de la tige dans le cas du regime I contre- 
courant. La m&ode numsique et tes r&&tats presentis concement un manque darts la littirature sur t’un 

des problemes les plus fondamentaux dans le domaine de la convection mixte dans un milieu poreux. 

GEMISCHTE KONVEKTION AN EINEM ISOTHERMEN, HORIZONTALEN, IN EIN 
POR&ES MEDIUM EINGEBETTETEN STAB 

Zusammenfassung-In diesem Beitrag wird iiber die Ergebnisse einer numerimhen Untersuchung der 
WGmeiibertragung durch gemischte Konvektion an einem horizontalen rotationssymmetrischen Stab, der 
in ein porijses Medium eingebettet ist, berichtet. Es wird zuniicfist ange~o~en, dag die Stabtemperatur 
gleich derjenigen des Mediums ist und dann pl&zlioh auf einen konstanten hiiheren Wert verindert wird. 
Das station&e Problem wurde mit einer Reihenentwickhmg in Kombination mit einem Finite-Differenzen- 
Verfahren sowohl fur Gebiete mit paralleIer Striimung als such fur solche mit G~gens~~mung gel&& 
Sowohl die StrBmungs- und Temperaturfelder als such die Veranderung der mittleren und lokalen 
W&metibergangskoeBzienten wurden in einem grogen Bereich von Reynolds-Zahl, Grashof-Zahl und 
Auftriebsparametem fiir eine Prandtl-Zahl von 0,7 detailliert untersucht. Eine der interessanten zu 
beobachtenden Erscheinungen in Bereichen mit Gegenstriimung ist das Auftreten einer Riickstromungs- 
zone an der oberen H%lfte der Staboberf%che. Das numerisohe Verfahren und die vorgestellten Ergeb- 
nisse fiillen eine Liicke in der Literatur f%r eines der grundlegendsten Probleme auf dem Gebiet der 

gemischten Konvektion in poriisen Medien. 

CMEIIIAHHAIJ KOHBEKHHR OT H30TEPMkiYECKOFO I-OPH3OHTAJIbHOFO 
CTEPJKHR, HOMEiQEHHOFO 3 HOPHCTYIO CPEAY 

~~p~~o~~~Kpe3ynbTa~lvacne~soroHccnenosa~ff TeMonepeHocanpHcMe~aHHo#KoH- 

seKuiarrOTrOpII30HTaRbfIO~O~~~KKp~~~roCePeHHR,noMemeHHorO BnOpHcTywcpeay, Qemona- 

meTcn,yTo mawme CTepxeHb HMeer Ty xe TebmepaTypy, wo H nopncraacpena, a 3aTeM mwoseHm 

iiarpeeae~c~ JIO 6onee e~conoti nocrorH~oS1 Temepaypbl. Crannonapnar 3aqa9a peluaercs M~TOAOM 

yceseHHK psi@33 B KOM6HHZUXHH c HGuoRb3osamebi KoHesKo-p&3HocTHO# cxehm pGna Jmyx Kow&irypa- 

u&4 noToKa ripi CII~THOM A ecrrpeseobf pemibfax TeqemK. &IS wcna Qmurrm, pa~rroro &?,nox- 

po6eo wcnemBamcb mabimecKHe H TehmepaTypsbte r~onn, H3hseHenHe cpelwrx H nowtmbuc 

~~HC~H~~ TeMOnepeHocaBLIERPOHHX~K~~O~~~~Pe#Homb~HrpaC~~,KTaK~enKpa- 

M~T~~~~B~~~TH.O~HMIH~H~~H~M.~~T~TOB pa6om nmiJmcb~o,Y~o s6~m3w nepxnelnofio- 
BHnbr crepxrrx no BCl-pWlHOM pelgllMe -metIns B03HHKWT pelJHpnyJInqHoHHar 30HB. YHCJI:neHH~ MeTOJTt 
H ~A~~eH~e pe3y~rarbr 3anonnmo-r ~~eronn&cn B 3fmepaType npo&n no onrro& n3 oCHOBR~LX 

npolinend B o6nacra CMeIIKtHHOti KOHBetUHH B IXOpHCTblX Cpe,wtX. 


